本文共 4984 字,大约阅读时间需要 16 分钟。
断路器模式不同于重试模式,重试模式是使应用程序可以重试操作以期望它会成功,而断路器模式是防止应用程序执行一个可能失败的操作,减少执行可能失败操作的CPU、内存、线程等资源的浪费,从而保证服务的整体可用
<!--more-->
实现原理流程:
状态 | 说明 | 备注 |
---|---|---|
Closed | 关闭 | 断路器关闭正常执行操作 |
Open | 打开 | 断路器开放,所有请求直接返回错误,不执行任何请求 |
HalfOpen | 半开放 | 允许有限数量的请求通过,如果执行成功,恢复到关闭状态,如果仍然失败,则恢复到开放,然后重新启动超时定时器 |
#断路器实现
状态统计:统计已经执行的请求的成功失败的数量,以确定是否需要进行状态转移
状态转移:根据当前统计信息和当前状态来进行目标状态的确定及转移操作请求执行:代理前端任务的执行,如果当前状态不需要进行尝试执行,就直接返回错误,避免资源浪费Golang里面已经有开源的实现,, 接下来救市剖析它的实现
Counts就是一个计数器,记录当前请求成功和失败的数量
type Counts struct { Requests uint32 // 请求数 TotalSuccesses uint32 // 成功 TotalFailures uint32 // 失败 ConsecutiveSuccesses uint32 // 连续成功 ConsecutiveFailures uint32 // 连续失败}
计数器完成对应请求状态的次数,为后续状态转移提供数据, Counts提供了onRequest、onSuccess、onFailure、clear几个辅助接口用于实现对应请求状态的操作,感兴趣可以看下
type CircuitBreaker struct { name string // maxRequests限制half-open状态下最大的请求数,避免海量请求将在恢复过程中的服务再次失败 maxRequests uint32 // interval用于在closed状态下,断路器多久清除一次Counts信息,如果设置为0则在closed状态下不会清除Counts interval time.Duration // timeout进入open状态下,多长时间切换到half-open状态,默认60s timeout time.Duration // readyToTrip熔断条件,当执行失败后,会根据readyToTrip决定是否进入Open状态 readyToTrip func(counts Counts) bool // onStateChange断路器状态变更回调函数 onStateChange func(name string, from State, to State) mutex sync.Mutex //. state 断路器状态 state State // generation 是一个递增值,相当于当前断路器状态切换的次数, 为了避免状态切换后,未完成请求对新状态的统计的影响,如果发现一个请求的generation同当前的generation不同,则不会进行统计计数 generation uint64 // Counts 统计 counts Counts // expiry 超时过期用于open状态到half-open状态的切换,当超时后,会从open状态切换到half-open状态 expiry time.Time}
请求执行,对外开放的请求执行接口
func (cb *CircuitBreaker) Execute(req func() (interface{}, error)) (interface{}, error) { // 执行请求钩子,会根据当前状态,来返回当前的generation和err(如果位于open和half-open则不为nil), 通过err来进行判断是否直接返回 generation, err := cb.beforeRequest() if err != nil { return nil, err } // 捕获panic,避免应用函数错误造成断路器panic defer func() { e := recover() if e != nil { cb.afterRequest(generation, false) panic(e) } }() // 执行请求 result, err := req() // 根据结果来进行对应状态的统计, 同时传递generation cb.afterRequest(generation, err == nil) return result, err}
func (cb *CircuitBreaker) beforeRequest() (uint64, error) { cb.mutex.Lock() defer cb.mutex.Unlock() // 获取当前的状态 now := time.Now() state, generation := cb.currentState(now) // open和half-open状态则直接返回 if state == StateOpen { return generation, ErrOpenState } else if state == StateHalfOpen && cb.counts.Requests >= cb.maxRequests { // 避免海量请求对处于恢复服务的影响,这里有一个限流的操作,避免请求数超过最大请求数 return generation, ErrTooManyRequests } // 统计状态 cb.counts.onRequest() return generation, nil}
func (cb *CircuitBreaker) afterRequest(before uint64, success bool) { cb.mutex.Lock() defer cb.mutex.Unlock() // 重新获取状态 now := time.Now() state, generation := cb.currentState(now) // 如果前后状态不一致,则不计数 if generation != before { return } // 根据状态计数 if success { cb.onSuccess(state, now) } else { cb.onFailure(state, now) }}
func (cb *CircuitBreaker) currentState(now time.Time) (State, uint64) { switch cb.state { case StateClosed: // 如果当前当前是closed状态,并且有设置expiry,则递增Generation到新一轮统计计数 if !cb.expiry.IsZero() && cb.expiry.Before(now) { cb.toNewGeneration(now) } case StateOpen: // 如果是Open状态,并且超时,则尝试到半打开状态 if cb.expiry.Before(now) { cb.setState(StateHalfOpen, now) } } return cb.state, cb.generation}
func (cb *CircuitBreaker) toNewGeneration(now time.Time) { // 递增generation, 清除状态 cb.generation++ cb.counts.clear() // 设置超时时间 var zero time.Time switch cb.state { case StateClosed: if cb.interval == 0 { cb.expiry = zero } else { cb.expiry = now.Add(cb.interval) } case StateOpen: cb.expiry = now.Add(cb.timeout) default: // StateHalfOpen cb.expiry = zero }}
断路器比较适合针对远程服务或者第三方服务的调用,如果该操作极有可能会失败,则断路器可以尽可能的减小失败对应用的影响,避免资源浪费
但缺点也显而易见,断路器本身相当于一层代理,在应用程序执行进行统计和控制,本身就有一定的资源消耗,同时内部基于synx.Mutex锁来实现,高并发下肯定会有锁争用问题,可能需要根据业务来使用多个断路器,来分散这种锁争用,同时应该避免在断路器req函数内,去执行重试和过长时间的超时等待,因为断路器核心是快速失败
更多文章可以访问
转载于:https://blog.51cto.com/14324123/2394675